Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biol. Res ; 53: 46, 2020. tab, graf
Article in English | LILACS | ID: biblio-1131889

ABSTRACT

BACKGROUND: Kidney cancer is one of the most common cancers in the world. It is necessary to clarify its underlying mechanism and find its prognostic biomarkers. Current studies showed that SHMT2 may be participated in several kinds of cancer. METHODS: Our studies investigated the expression of SHMT2 in kidney cancer by Oncomine, Human Protein Atlas database and ULCAN database. Meanwhile, we found its co-expression gene by cBioPortal online tool and validated their relationship in A498 and ACHN cells by cell transfection, western blot and qRT-PCR. Besides these, we also explored their prognostic values via the Kaplan-Meier plotter database in different types of kidney cancer patients. RESULTS: SHMT2 was found to be increased in 7 kidney cancer datasets, compared to normal renal tissues. For the cancer stages, ages and races, there existed significant difference in the expression of SHMT2 among different groups by mining of the UALCAN database. High SHMT2 expression is associated with poor overall survival in patients with kidney cancer. Among all co-expressed genes, NDUFA4L2 and SHMT2 had a high co-expression efficient. SHMT2 overexpression led to the increased expression of NDUFA4L2 at both mRNA and protein levels. Like SHMT2, overexpressed NDUFA4L2 also was associated with worse overall survival in patients with kidney cancer. CONCLUSION: Based on above results, overexpressed SHMT2 and its co-expressed gene NDUFA4L2 were all correlated with the prognosis in kidney cancer. The present study might be benefit for better understanding the clinical significance of SHMT2 and provided a potential therapeutic target for kidney cancer in future.


Subject(s)
Humans , Glycine Hydroxymethyltransferase/genetics , Electron Transport Complex I/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , RNA, Messenger , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Staging
2.
Indian J Hum Genet ; 2011 May; 17(Suppl 1): 48-53
Article in English | IMSEAR | ID: sea-138984

ABSTRACT

BACKGROUND: Genetic variations represented as single nucleotide polymorphisms (SNPs) vary across the world population. This genetic polymorphism (such as SNPs) plays an important role in pharmacogenomics. SNPs that affects cellular metabolism, by altering the enzyme activity, have an important role in therapeutic outcome. Allele frequencies in number of clinically relevant SNPs within south Indian populations are not yet known. Hence, we genotyped randomly selected unrelated south Indian subjects from different locations of south India representing the heterogeneous ethnic background of the population. MATERIALS AND METHODS: Common variants of MTHFD1, TYMS, SHMT1, MTR, MTRR, CBS and SULT1A1 gene polymorphisms were screened from healthy unrelated south Indian volunteers. Genotypes were determined using RFLP analysis of polymerase chain reaction-amplified products and confirmed by DNA sequencing. Chi-square test was performed to test for deviation from the Hardy-Weinberg equilibrium for each locus. RESULTS: Gene allele frequency for several polymorphisms in our study differed significantly between the populations of other nations reported for several of the SNPs. These results demonstrate that the populations in different geographic regions may have widely varying genetic allele frequencies for clinically relevant SNPs. CONCLUSION: The present study reports, for the first time, the frequency distribution of MTHFD1, TYMS, SHMT1, MTR, MTRR, CBS and SULTIA1 gene polymorphisms in a south Indian population. Population-specific genetic polymorphism studies will help in practicing pharmacogenomic principles in the clinics.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Arylsulfotransferase/genetics , Cystathionine beta-Synthase/genetics , Ferredoxin-NADP Reductase/genetics , Folic Acid/genetics , Genetic Variation/genetics , Glycine Hydroxymethyltransferase/genetics , Humans , Pharmaceutical Preparations/metabolism , Polymorphism, Genetic , Population Groups , Thymidylate Synthase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL